Problem
Source: Codewars
The aim of the kata is to decompose $n!$(factorial n) into its prime factors. For example:
Input: n = 12
Output: 2^10 * 3^5 * 5^2 * 7 * 11
Note that $n$ can reach 4000 and, of course, 4000! would be very big with more than 12000 digits ∑(O_O;)
Solution
Idea
By definition, the factorial of a positive integer $n$, denoted by $n!$, is the product of all positive integers less than or equal to $n$: $$12! = 1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12$$
Thus, decomp $n!$ also means decomp each factors of $n!$ then multiply them. For example, $n = 12$, we can decomp each factor as the table below:
12! | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
decomp | $2$ | $3$ | $2^2$ | $5$ | $2\times3$ | $7$ | $2^3$ | $3^2$ | $2\times5$ | $11$ | $2^2\times3$ |
After we multiply them, the final result is the prime factor decomposition of a $n!$ which we need to find $$2\times3\times2^2\times5\times2\times3\times7\times2^3\times3^2\times2\times5\times11\times2^2\times3 = 2^{10}\times3^5\times5^2\times7\times11$$
Program
First of all, we initialize 2 arrays to save the factors and their primality
bool prime[n+1];
int value[n+1];
prime[0] = prime[1] = false;
for(int i = 2; i <= n; i++){
prime[i] = true;
value[i] = i;
}
Generally, we use Eratosthene to find the prime numbers, now, with some changes, we can decomp all composite numbers which are multiples of found prime.
for(int i = 2; i <= n; i ++){
if(f[i].prime){
int power = 1;
for(int j = i+i; j <= n; j += i){ //In this line, j = i+i not i*i
f[j].prime = false;
while(f[j].value % i == 0){
f[j].value /= i;
power++;
}
}
}
}
Finally, we add some code for output
for(int i = 2; i <= n; i ++){
if(f[i].prime){
res += (" * " + std::to_string(i));
int power = 1;
for(int j = i+i; j <= n; j += i){
prime[j] = false;
while(value[j] % i == 0){
value[j] /= i;
power++;
}
}
if(power > 1)
res += ("^" + std::to_string(power));
}
}
res.erase(res.begin(), res.begin()+3);
return res;
And done! UwU)/
Thank you for reading.